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TECHNICAL NOTES 

A compact solution of the parallel flow three-fluid heat exchanger problem 
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Department of Mechanical and Aerospace Engineering. University of Tennessee, Knoxville, TN 37996. 
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INTRODUCTION 

Three-fluid heat exchangers are widely used in chemical pro- 
cesses and cryogenics. The first study of the countercurrent 
parallel flow three-fluid heat exchanger problem (see Fig. I) 
was performed by Morley [I], though the results obtained 
were not given in an explicit form. Hausen [2] obtained an 
explicit analytical solution of temperature distributions of 
the same type of a heat exchanger but only for a coun- 
tercurrent flow arrangement. In a number of other efforts, 
the same solutions for cocurrent and countercurrent flow 
arrangements are repeatedly reinvented [3-71. The existing 
solutions for temperature distributions within the parallel 
flow three-fluid heat exchanger are. as a rule, of a very com- 
plex algebraic structure and frequently in a dimensional 
form. In addition to that, the solutions are usually not 
adequately tailored to be used in the same form for all poss- 
ible fluid flow arrangements. Furthermore, a convenient ana- 
lytical procedure for determining the so called “temperature 
cross” phenomenon does not exist in open literature. A tem- 
perature cross is defined to exist in an exchanger when the 
equalization of fluid temperatures occurs in some position(s) 
of the exchanger indicating reverse heat transfer has 
occurred. thus not fully utilizing all of the heat transfer 
surface. 

The present note will address all these questions. and will 
provide explicit formulas for determining the temperature 
distributions of all three fluids, and in all four possible fluid 
flow arrangements of parallel flow three-fluid heat 
exchangers. In addition to that. a single analytical expression 
is given for determining the temperature cross for any com- 
bination of fluids involved. and all fluid flow arrangements 
under investigation. The results are particularly convenient 
for numerical computation in thermal design of a parallel 
flow three-fluid heat exchanger. 

MATHEMATICAL MODEL 

In the analysis the hst of idealization and approximations 
is as follows: (i) the three-fluid heat exchanger operates 
under steady-state conditions; (ii) heat exchange to the sur- 
roundings is neglected; (iii) specific heats of each fluid are 
constant ; (iv) there are no internal thermal sources (or sinks) 
in the walls or fluids; (v) perfect transverse mixing occurs in 
each How passage; (vi) only one of the fluids has direct 
thermal interactions with the other two (i.e. a three-fluid 
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Fig. I. Schematic of three-fluid heat exchanger 

heat exchanger with two thermal commumcatlons) ; (vii) zero 
thermal conduction is assumed in fluids or in walls parallel 
to the fluid flow direction ; (viii) heat transfer coefficients are 
independent of temperature. time and position ; and (ix) the 
heat transfer area is distributed uniformly on each fluid side 
(the overall extended-surface temperature effectiveness is 
considered uniform and constant). 

Four possible different parallel stream arrangements PIL 
P4 are identified in Table I by using the fluid flow indicator 
(see Fig. I), for inlet side of each of the fluid streams. For 
example, in the cocurrent arrangement (PI), all three streams 
flow in the same direction. In countercurrent flow arrange- 
ments (P2-P4), one of the streams is flowing in direction 
opposite to other two. 

The set of governing equations can be non-dimen- 
slonalired as follows : 

(1) 

where 
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heat transfer surface area [m’] 
heat capacity rate ratio, defined by 
equations (5) 
specific heat at constant pressure 
[J kg-’ K-‘1 
coefficients in equations (8), defined in 
Table 4 
functions, defined in Table 2 
fluid Bow indicator, defined in Table I 
flow length of the heat exchanger [m] 
coe%ents in equations.(8), defined in 
Table 4 
mass IIow rate [kg SC’] 
number of heat transfer units, defined by 
equations (5) 
over&J thermal resistance ratio, defined by 
equations (5) 
coefficient in functions E, defined in Table 
2 = 
temperature [K] 
overall heat transfer coefficient between kth 

X axial Cartesian coordinate [ml. 

Greek symbols 
a, 8, y coethcients in functions @ and Y, defined in 

Ta$Le2 
c: heat exchanger effectiveness 
5 non-dimensional coordinate, defined by 

equation (4) 
Ca, Y functions in the solution given by equations 

(6), defined in Table 2 
0 non-dimensional temperature, defined by 

equation (4). 

Subscripts 
k,j kth orjth fluid stream (k, j = I, 2, 3) 
t=O ati= 
2FHE two-fluid heat exchanger 
in at inlet 

Superscripts 
* at temperature cross 

and jtS.titd &earn based on the heat 
transfer area A [J SC’ K-‘1 

=t cocurrent flow arrangement 
S countercurrent flow arrangement 

The corresponding boundary conditions are given in Table 1. 

An&tic.al results pmaented in this p&@r were obtained 
by using. Laplace trana&ms technique. Without eh&Qratmg 
in det$s the analytical protc;tiure that can he hnd in any 
~xxtb~c& of advanced enlgineering mathemattcs, O&Y the 
Anrd form of the salutiotis. w@ be discussed. The set of aqua- 
t&a W(3) has been a&& aWg with the cormapQnd& 

(‘W&e 1). The s&t&ma. have been 
of &he four poas$& f&d ftow arrange- 
unb&nced streams (see Table I and 

Fig. J), The sohttions are systematized as follows : 

Ok(<) = o,.i=,~~,,(5)+Q,.r=ou1,t5), 
k = l,2,3, (6) 

where the subscript k denotes the @id flow stream. The 
functions Ca,(r) and ‘f$({) are given in Table 2. The 
cQe&cients a;. c _sand E)*, _ B (the nQn-dimen&i?tIa!~d tern: 
peratures of guids 2 artQ 3, coJ?~ca+ed at { = 0, see Fig. I) 
are d@ed in Tab&r 3. The nan-thmrmsionalized parameters 
NTU, Cf. *, C$, R* and B,.i, are given by equations (4) aad 
(9. 

The fluid flow sip ind@ttors ir and f, (see Table 2) should 
be used as ‘venis Table 1. N$e that i, = + 1 always holds 
as ad t 

-??a2 
by ihe co.nventiQn. Therefore, this indicator is 

not u 
__-. _._ _ s~m~~w~~i-~~lons. 

The solution obtaiW &W&MS (6)] is in a full numerical 
aceordartoe with the existing aoluti@na obtained for pure 
countercurrent (P2, Tab& l), ati &our#nt- fP1, Table 1) 
fiuid flow actanmnts 1st. The comparison of this solutian 
with tzie solMXl $iv&m &I ref. [q SBOWJ B far 
any of four armngemWs. It can be proved tit tke explicit 
solution given by equations (4) can be transformed in an 
implieit form o&a&i by TW4ie et ol:f8] fd any of the 
four an&se4 &id Bow arraqements. The w&d&on of the 
analytical solution can also be easily verified by redting it 
to those for conventional countercurrent or cocurrent two- 
fluid heat exchangers by setting iq egyation (6) R* = 0 and 

Table I. The fluid flow indicator and nondimensionalized boundary conditions for parallel stream arrangements 

Fluid flow arrangements 
PI P2 P3 P4 

k 4 5 @,.c ir 5 %< ir 5 %; il 5 @A., 

2 
3 

+I 0 0 +I 0 0 +I 0 0 +1 0 0 
fl 0 I -I I I -I I I +1 0 1 
+I 0 @3.,” + 1 0 %,” -I 1 @%.,” -I 1 Q3.m 
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Table 2. Functions m(t) and Y(5) in equations (6) 

(7) 

where s&r and s* *FHE are the conventional two-fluid heat 
exchanger efibct@eqess for cocurrent and countercurrent 
hoE ar5grng@%nL re_sp&.ivvely- C!% . I- 

Ia some dtuations,&pendi~ on the &t of di&&ionless 
parameters [see equation (5)], and boundary conditions 
(Table I), the local equalization of fluid stream temperatures 
takes place at certain location(s) within the heat exchanger. 
In other words, it means that in such a situation the “tem- 
perature cross” between the temperature fields of the central 
and/or lateral fluids, respective]y, exists. This situation can 
be interp@ed in the sense that in a heat exchanger the inver- 
sion of the-heat t?at&fer rate di&tions occurs. in such a 
case, in a heat exchangersection where the fluid which has 
to be-heated has larger local temperatures than the fluid 
which has to be cooled, the corresponding beat transfer areas 

are wasted. Therefore, there is an ultimate need to predict 
the eventual existence of the temperature cross in a heat 
exchanger (for design and operation parameters selected) in 
order to control the design. 

The equalization of the corresponding local temperature 
values of pairs of fluid flow streams appears at the particular 
location in a heat exchanger t* if 9 4 <* < I. Using the 
solution given by equations (6) one can show, after cum- 
bersome but straightforward algebraicmanipulation, that r* 
takes values according to : 

.$i=LIn-. l%,+E*., 
yNTU Dk./-LA., (8) 

Parameters I& and I!,,~ are given in Table 4. The values of 
arudefined in Ttb@ 3,(tor all fom possible 

.- &boas fk, jj denoW theeor- 
responding bmperatnmcross (La, between the fluid @reams 
{ 1,2}, {2,3} and (3, I}, respectively). It is worth noting that 
streams I and 3 are not mutually in a direct thermal contact 
(i.e. the fluid I is separated from the fluid 3 by the fluid 2). 
The temperature cross expression [equation (S)] is in a given 
form valid for all four flow arrangements, and for any of 
the possible three-fluid stream combinations. Therefqre, this 
solutiqn is mpre cpnvenient than the three expressions 
obtaiqed eot&Mitig tiubse@mntly the~&‘res$bnding pairs of 
temperature distributions [s]. 

In Fig. 2 the nature of the temperature distributions in a 
three-fluid heat exchanger is demonstrated. The set of rel- 

Table 3. 0,; = (, and 0,. = “. equations (6) 

Arrangement 02. < = II 03. ; = I, 

PI 

P2 

I Q3.,” 
1 -@3.,.~2(1) 

cb,(l) 
%in 

P3 

P4 

Yy,(l)-Y2(1)03.,” 0 2.1-o::‘,=O@,(l) 
~*(l)Y,(l)-Y,(l)~,(1) Y,(l) 

I ox,, -@dl) 
Y,(l) 
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Table 4. Parameters used in equation (8) 

NTe1.25 ci;=o.t3 c&o.25 
I , 1 I _ 

8.0 0.2 0.4 0.6 0.8 1 

t 

1.0 

0.8 

0.6 

Q) 
0.4 

0.2 

O-9 

co~-cocuRRENT 
PS / 

0.2 0.4 0.6 0.8 1 

# 

0.8 

0.6 

8 

0.4 

0.2 

O-0 

1.0 

0.8 

0.8 

8 

0.4 

0.2 

O-0 

NTu=1.25 c,‘=o.e ~*=a5 
O-2 0.4 0.0 0.8 1.0 

t 

\ CM-COuNTEucU 

/ mu=1 25 cm*=o.a ~*=0.25 
I I I 

0.2 0.4 0.6 0.8 I 
# 

0 

FIN. 2. Temperature distributions In a cocurrent three-fluId heat exchanger (arrangement Pl), a coun- 
tercurrent three-fluid heat exchanger (arrangement P2). a countercurrent-cocurrent three-fluid heat 
exchanger (arrangement P3). and a cocurrentkountercurrent three-fluid heat exchanger (arrangement P4). 
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evant parameters is the same, but the flow arrangement is 
different in each case. For the cocurrent flow arrangement 
(Pl) the temperature cross is between fluids 2 and 3. In the ‘. 
case of the countercurrent flow arrangement the temperature 
cross does not exist, while for both countercurrent-cocurrent 2. 

(P3) and cocurrent-countercurrent (P4) flow arrangements 
temperature crosses (both direct and indirect) exist. In order 
to determine the existence of the temperature cross without 3. 

analysing the temperature distributions within a heat 
exchanger. one can use equation (8). It is worth noting that 
the calculation should include double precision. 4. 

5. 

CONCLUDING REMARK 6. 

A compact solution was obtained for the temperature 7 
distribution and temperature cross of a three-fluid heat 
exchanger with two thermal communications among the 
thermally unbalanced fluid streams. The analysis was con- *, 
ducted for any of four possible fluid flow arrangements. 

9. 
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Conjugate convection from a sphere in a porous medium 
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1. INTRODUCTION 

TKANSPOKT processes through porous media is a subject that 
has been widely studied in the scientific commumty during 
the last two decades. This interest is justified by the important 
role it plays in the industrial sector. particularly in the insu- 
lating systems for buildings and heat exchanger devices. 
energy storage systems, material processing and geothermal 
systems. An excellent review on this subject was recently 
provided by Nield and Bejan [I]. 

Studies of convective heat transfer from an isothermal 
sphere embedded in a porous medium are important in many 
engineering and geophysical applications such as spherical 
storage tanks. packed beds of spherical bodies, solidification 
of a magma chamber and others. However. only a little work 
has been devoted to this problem in the past. An early paper 
by Yamamoto [2] presents an analytical solution for small 
Rayleigh numbers. This paper has recently been extended by 
Sano and Okihara [3] to the case of an unsteady convective 
flow. But boundary-layer solution (large Rayleigh numbers) 
of natural convection about a general axisymmetric heated 

body embedded in a porous medium have been presented by 
several authors. notablv Merkin 141. Nilson 151 and Nakav- 
ama and Koyama [6]. In particular,>Cheng [7] and Chen and 
Chen [8] have treated the case of a sphere. it was shown in 
[7] that this problem admits a similarity solution. Further, a 
systematic analysis of the problem of natural convection 
from an isothermal sphere immersed in a fluid-saturated 
porous medium has been presented by Pop and lngham 
[9]. In addition to obtaining a second-order boundary-layer 
solution they used a finite-difference scheme to obtam 
numerical results for small values of the Rayleigh numbers. 
as well. 

However. to the authors’ knowledge the conjugation fea- 
tures of this problem have never been analysed. It is impor- 
tant to mention that conjugate heat transfer problems. in 
which the convective heat transfer depends strongly on the 
thermal boundary conditions, are important in many heat 
transfer equipments because this dependence usually degrd- 
dates the heat exchanger performance. Hence, the present 
problem might have some relevance to understanding of a 
charging or discharging process of energy in regenerative 


